'Impossible' black holes discovered by the James Webb Space Telescope may finally have an explanation
Peculiar James Webb Space Telescope observations seem to show gargantuan black holes in the earliest moments of the universe. New research may explain how they formed, thanks to primordial "seeds".
Astronomers have long been puzzled by supermassive black holes that seem to have fully formed in the earliest epochs of the universe. Now, a new paper suggests that these monster black holes may have emerged at the dawn of the Big Bang as tiny, primordial "seeds."
Almost all galaxies host supermassive black holes in their cores. They range in size from about 100,000 times the mass of the sun to billions of solar masses. Most surprisingly, observations with the James Webb Space Telescope (JWST) have revealed that these giants existed at the very edge of the cosmic dawn, just a few hundred million years after the Big Bang, right after the first stars and galaxies started forming.
The challenge with supermassive black holes appearing so early is that we know of only one way to form black holes: through the deaths of massive stars. Stars need to form, live, die and leave behind black holes. Then they need to merge and accrete new material to reach monstrous proportions, — all within an incredibly short amount of time.
This unusual situation has spurred researchers to come up with clever ways to quickly build giant black holes. In a paper submitted to the Journal of Cosmology and Astroparticle Physics, researchers propose a radical solution: These giant black holes may have been born in the incredibly early universe.
Related: 12 James Webb Space Telescope findings that changed our understanding of the universe
In the 1970's, Stephen Hawking proposed that the universe may have naturally produced copious numbers of tiny black holes in the first few moments of the Big Bang. These black holes wouldn't come from the collapse of stars; rather, they would be born directly from matter and energy compressed to high densities in the chaotic fluctuations of those early epochs.
Hawking suggested that these black holes, which could be as small as asteroids, would slowly dissolve through so-called Hawking radiation and be visible in the present-day universe. Decades of surveys have not found any evidence for these primordial black holes, so we know that if they exist, they must make up a tiny fraction of all the matter in the universe.
Get the Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
But that would be more than enough: The researchers found that even a small fraction of primordial black holes could grow over the course of 100 million years. If those black holes found themselves in the densest collections of matter, they could have accreted enough material to reach supermassive status in the epoch in which JWST observed them.
In this scenario, giant black holes — quite possibly even the one in the center of the Milky Way — wouldn’t grow after the formation of the first stars and galaxies but rather in parallel with them. They would gain most of their mass during the cosmic dark ages, the time before starlight shone throughout the universe. When those first stars did ignite, they would have shared the cosmos with giant, hulking monsters.
At this stage, the idea is only a hypothesis. The researchers propose that this model of black hole growth should be incorporated into simulations of the development of the first stars and galaxies to see how realistic the scenario is. Then, they can compare those more realistic black holes to observations and see if this explains the mystery.
Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: community@space.com.
Paul M. Sutter is an astrophysicist at SUNY Stony Brook and the Flatiron Institute in New York City. Paul received his PhD in Physics from the University of Illinois at Urbana-Champaign in 2011, and spent three years at the Paris Institute of Astrophysics, followed by a research fellowship in Trieste, Italy, His research focuses on many diverse topics, from the emptiest regions of the universe to the earliest moments of the Big Bang to the hunt for the first stars. As an "Agent to the Stars," Paul has passionately engaged the public in science outreach for several years. He is the host of the popular "Ask a Spaceman!" podcast, author of "Your Place in the Universe" and "How to Die in Space" and he frequently appears on TV — including on The Weather Channel, for which he serves as Official Space Specialist.
-
contrarian This clearly indicates that primordial black holes (PBHs) were formed by a direct collapse mechanism, prior to the formation of stars, and made the seeds for the appearance of galaxies and their evolution.Reply
The larger the PBH, the faster a galaxy would grow from the surrounding baryons, and probably dark matter as well. Of course dark matter may very well have been the primary cause of direct collapse, since some or all of it could be made up of large, non-baryonic hadrons.
Not so impossible after all............